

# EXPLORING PENSION FUND DEVELOPMENT THROUGH MACRO-FINANCIAL INTERACTIONS IN DIVERSE AGEING ECONOMIES

Sameena Buzdar\*1, Zu Xing Chu2, Simra Batool3

<sup>1, 2</sup> Department of Commerce, Hunan University of Technology and Commerce, China <sup>3</sup> Department of Business Administration, University of Peshawar, Pakistan

<sup>1</sup>sameena43@yahoo.com, <sup>\*2</sup>xingchu@jutc.edu.cn, simrabatoolpk@gmail.com

## Keywords

Pension Fund Growth, Dependency Ratio, Working-Age Population, Replacement Rate, Employment Rate

# **Article History**

Received on 12 April 2025 Accepted on 16 May 2025 Published on 30 June 2025

Copyright @Author Corresponding Author: \* Sameena Buzdar

#### **Abstract**

This study investigates the impact of macro-financial variables-such as dependency ratio, replacement rate, average salary, working wages, and other key macroeconomic factors—on pension fund development. It compares the effects of these factors across aging and younger OECD countries, providing insights into the macroeconomic dynamics that underpin the substantial asset holdings of OECD pension funds. A dynamic panel data model was employed to assess the individual significance of each variable, with R<sup>2</sup>-change analysis used to identify the primary macroeconomic drivers of pension fund growth. Findings indicate that average age, working wages, personal income tax, and inflation positively influence pension fund growth in aging economies, while exhibiting negative effects in younger economies, depending on the growth perspective. By integrating a literature review of multiple economies, the study highlights key determinants of pension fund performance and offers valuable guidance for policymakers and analysts in OECD countries seeking to optimize pension fund management.

# **INTRODUCTION**

Social security is crucial for the well-being of citizens, particularly the elderly, as it provides financial security against unforeseen circumstances such as unemployment. While prior research investigated the performance and governance of pension funds, this study aims to identify the key macroeconomic determinants of pension fund growth. Existing OECD reports offer descriptive analyses of pension fund factors but lack detailed insights into the specific impacts of asset allocations (e.g., equities, bonds, real estate) on fund growth. Pension funds serve as institutional investors, contributions from sponsors beneficiaries to provide future pensions (Davis,

1995). These institutions facilitate individual savings during working life for retirement. In most countries, early withdrawal from pension funds is restricted, enabling long-term investment strategies aimed at maximizing returns. Pension firms allocate funds across various assets, including corporate equities, real estate, and government bonds, to enhance profitability. Considering the significant proportion of assets held by pension funds within OECD economies (OECD, 2017), understanding their governance and growth determinants is essential, especially given the context of aging populations.



This study analyzes the factors influencing pension fund growth in selected OECD countries, utilizing panel data from 24 nations over a 43-year period. The OECD countries are categorized into two groups based on their pension fund assets-to-GDP ratio: higher-growth-oriented (AGING) for those above the median ratio and lower-growth-oriented (YOUNGER) for those below.

Study Layout

Literature Background and Hypotheses Development

Based up on the past academic literature the study highlights some macroeconomic variables that influence the growth of the pension fund, the section below (Table-1) develops plot of each variable into the shape of a hypothesis for analysis.

Table-1: Summary of Supporting Theories for Macro-Economic Factors and Growth of PFs

Macro-Economic Determinants of Pension Funds in Selected-OECD Countries

| Symbol | Variable                    | Expected<br>Relation | Literature Review                                                                                                                         | Supporting Theory                                                |  |  |
|--------|-----------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|
| PFG    | Pension Funds<br>Growth     | PN                   | Roce, Kaminker, & Stewart (2011); Casey, (2014); Alonso, et al. (2010); Singh & Mehta, (2015); Açıkgöz, Uygurtürk, & Korkmaz, (2015)      | Utility Theory+ Institutionists Approach+ Theory of Immunization |  |  |
| DR     | Ratio N Wan, (2007); Goo    |                      | Magnus, (2012); Lee, (2011); Horioka, & Wan, (2007); Godlee, (2013); Horioka, & Terada-Hagiwara, (2012)                                   | Lheory of Contribution                                           |  |  |
| RR     | Replacement<br>Rate         | N                    | Worrall, & Appel, (1982); Lin, & Ding, (2007); Zaigui, (2008); Gustman, & Steinmeier, (1999); Yang, (2009); Aldrich, (1982)               | Theory of Contribution<br>Density                                |  |  |
| AGW    | Average Wage                | PN                   | Galí, & Monacelli, (2016); Daly, & Hobijn, (2017); Feldstein, (2018); Ruhs, & Vargas-Silva, (2015); Adrjan, & Bell, (2018)                | Theory of Pooling                                                |  |  |
| WRK    | Working Age                 | PN                   | Hinrichs, (2018); Vogel et al. (2017);<br>Drucker, (2017); Curran, & Blackburn,<br>(2001); Scherger, (2016)                               | Life-Cycle Theory                                                |  |  |
| ER     | Employment<br>Rate          | Р                    | Evensen et al. (2015); Möhring, (2015);<br>Beveridge, (2014); Banerjee, & Blau,<br>(2016); Laun, & Wallenius, (2015)                      | Theory of Pooling                                                |  |  |
| SR     | Saving Rate                 | P                    | Imrohoroğlu, & Zhao, (2018); Lachowska, & Myck, (2018); Blau, (2016); De Freitas, N. E. M., & Martins, (2014); Börsch-Supan et al. (2015) | Theory of Pooling                                                |  |  |
| PTR    | Personal Income<br>Tax Rate | PN                   | Parker, (2018); Grubert, & Altshuler, (2015); Karamcheva, & Sanzenbacher, (2014); Feldstein, (2018); Collins, & Hughes, (2017);           | Welfarists Approach                                              |  |  |



| GDPG | GDP Growth<br>Rate      | P  | Scharfstein, (2018); Been et al. (2017);<br>Heer, & Irmen, (2014); Bijlsma, Van, &<br>Haaijen, (2014); Frost et al. (2018); Arbatli<br>(2017); Cingano, (2014) | Growth-Led Finance |  |  |
|------|-------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|
| EXR  | Exchange Rate           | N  | Galí, & Monacelli, (2016); Gabaix, & Maggiori, (2015); Ezeanyeji (2016); De Vita, (2014); Adeniran, Yusuf, & Adeyemi, (2014); Dimpfl, & Schmidt, (2018)        | ~                  |  |  |
| СРІ  | Consumer Price<br>Index | PN | Budd, & Seiders, (1971); Pensions<br>Commission. (2004); Thompson, (1978);<br>Heller, (1980); Prammer, & Reiss, (2015);<br>Bivens, (2015)                      | ,                  |  |  |

# Data and Methodology

This research adopts a comparative framework based on demographic structures, categorizing OECD countries into "aging" and "younger" economies. Aging economies—such as Japan, Italy, France, Sweden, and Finland–face rising old-age dependency ratios, increasing fiscal pressure on pension systems. In contrast, younger economies-including the United States, Mexico, Turkey, and Australiaexhibit lower dependency ratios, offering relatively favorable conditions for pension fund accumulation. This classification enables a nuanced analysis of how demographic composition influences responsiveness of pension funds to macroeconomic variables like working wage, inflation, and personal income tax. Understanding these dynamics helps tailor pension policies to the demographic realities of each group.

# Techniques used for Analysis

This study employs dynamic panel data techniques alongside pooled ordinary least squares (OLS), random-effects, and fixed-effects models to comparatively analyze the financial sustainability of pension funds in selected OECD countries. The analysis focuses on contrasting aging economies with younger economies.

The following model presents the general economic functions used in this study.

PFG =

(PFG<sub>t-1</sub>, DR, RR, AGW, WRK, ER, SR, PTR, GDPG, EXR, INF)
------ Equation (1)

Based on the above-described model, dynamic panel data approach was used.

#### Where:

- PFG = Pension Funds Growth
- DR = Dependency Ratio
- > RR = Replacement Rate
- AGW = Average Wage
- ➤ WRK = Working Age
- > ER = Employment Rate
- SR = Savings Rate
- > PTR = Personal Tax Rate
- ➤ GDPG = Gross Domestic Product Growth
- EXR = Exchange Rate
- CPI = Consumer Price Index
- $\triangleright$  D<sub>it</sub> = Dummy for time fixed effect
- $\triangleright$  ε = the error term

## Results Analysis and Discussion

The following table 2 shows the descriptive statistics of the variables used in this study. Table 3, presented at the appendix of this study that describes the correlations among variables of this study for whole sample, young, and aging countries.

**Table-2: Summary Statistics** 

|          | Whole-San | nple Countries | Aging-Cou | ntries    | Young-Cou | Young-Countries |  |
|----------|-----------|----------------|-----------|-----------|-----------|-----------------|--|
| Variable | Mean      | Std. Dev.      | Mean      | Std. Dev. | Mean      | Std. Dev.       |  |
| PFG      | 13.67     | 7.52           | 12.5      | 7.19      | 13.69     | 8.71            |  |
| DR       | 12.73     | 5.81           | 14.82     | 6.21      | 15.82     | 6.46            |  |



| RR   | 65.01 | 3.03   | 65.76 | 6.02  | 62.85 | 5.29   |
|------|-------|--------|-------|-------|-------|--------|
| AGW  | 11.47 | 1.06   | 17.68 | 3.49  | 15.18 | 3.79   |
| WRK  | 65.95 | 2.43   | 43.59 | 3.41  | 64.75 | 4.58   |
| ER   | 65.23 | 5.31   | 45.57 | 4.61  | 61.47 | 5.67   |
| SR   | 6.3   | 4.93   | 12.57 | 4.01  | 8.04  | 4.7    |
| PTR  | 41.93 | 7.63   | 34.67 | 6.38  | 45.13 | 7.82   |
| GDPG | 4.24  | 6.11   | 5.06  | 1.89  | 2.15  | 3.75   |
| EXR  | 46.21 | 140.98 | 44.52 | 104.7 | 41.46 | 256.93 |
| CPI  | 3.413 | 3.021  | 2.387 | 3.189 | 7.698 | 2.461  |

Table 4 in the appendix shows that for the entire sample, the R-squared values of the FE, RE, and pooled OLS models explain the variance in pension fund growth, with values of 19.8%, 19.20%, and 18.11%, respectively. The F-test results indicate that all three models are significant at the 1% level, with values of 61.05, 58.12, and 54.30. For the AGING-Countries sample, the R-squared values for the same models are 37.35%, 36.28%, and 37.12%, respectively, also explaining changes in pension fund growth. These models are also significant at the 1%

level, with F-test values of 17.97, 10.23, and 9.89. Similarly, for the YOUNGER-Countries sample, the R-squared values are 35.03%, 35.19%, and 35.76%, and the models are significant at the 1% level with F-test values of 20.75, 23.79, and 21.20. The analysis using AIC and BIC criteria suggests that the fixed effect model is the most suitable for the whole sample and AGING-countries, while the random effects model is more appropriate for YOUNGER-countries.

| Table 3. | Correlation | Matrix  |
|----------|-------------|---------|
| Table-3: | Correlation | VIATRIX |

| Macro-Economic Factors and Their Relationships |      |         |         |         |         |        |        |        |        |        |        |     |
|------------------------------------------------|------|---------|---------|---------|---------|--------|--------|--------|--------|--------|--------|-----|
| Variables                                      | VIF  | PFG     | DR      | RR      | AGW     | WRK    | ER     | SR     | PTR    | GDPG   | EXR    | CPI |
| PFG                                            |      | 1       |         |         |         |        |        |        |        |        |        |     |
| DR                                             | 7.25 | -0.491* | 1       |         |         |        |        |        |        |        |        |     |
| RR                                             | 7.37 | -0.307* | 0.013   | 1       |         |        |        |        |        |        |        |     |
| AGW                                            | 6.22 | 0.443*  | 0.780*  | 0.094   | 1       |        |        |        |        |        |        |     |
| WRK                                            | 5.12 | 0.424*  | -0.069* | -0.024  | -0.110* | 1      |        |        |        |        |        |     |
| ER                                             | 5.11 | 0.580*  | 0.029   | -0.056  | 0.051*  | 0.245* | 1      |        |        |        |        |     |
| SR                                             | 4.89 | 0.601*  | -0.016  | -0.075  | -0.059  | 0.047* | -0.052 | 1      |        |        |        |     |
| PTR                                            | 3.76 | 0.751*  | -0.037  | 0.051*  | -0.056  | 0.012  | -0.046 | 0.042  | 1      |        |        |     |
| GDPG                                           | 2.96 | 0.871*  | -0.114* | -0.562* | 0.123*  | 0.139* | 0.536* | 0.611* | 0.467* | 1      |        |     |
| EXR                                            | 2.44 | -0.931* | 0.021   | -0.033  | -0.063  | -0.027 | -0.061 | -0.054 | 0.051  | -0.021 | 1      |     |
| CPI                                            | 1.36 | 0.401*  | 0.035   | -0.051  | -0.072  | 0.031* | -0.029 | -0.055 | 0.061  | -0.026 | 0.036* | 1   |

<sup>\*</sup> Shows significance at the .05 level



# Pension Funds Growth (PFG)

Table 4 shows that, for the entire sample, the PFG from the previous year and the PFG from this year are positively and significantly correlated at 10%,

5%, and 5%, respectively. Furthermore, if the PFG from the previous year is raised by 1%, the PFG from this year will likewise be raised by 0.222%, 0.223%, and 0.235% in FE, RE, and pooled-OLS, respectively. Table 4 for the AGING Countries sample indicates that the PFG from the previous year and the PFG from this year are positively and significantly correlated, at 1%, 5%, and 1%, respectively. Furthermore, if the PFG from the previous year is raised by 1%, the PFG from this year will likewise be raised by 0.219%, 0.227%, and 0.271% in FE, RE, and pooled-OLS, respectively. Table 4 indicates that, for the YOUNGER-Countries sample, the PFG from the previous year and the PFG

from this year have a negative and significant connection of 1%, 10%, and 1%, respectively. Furthermore, it can be explained as follows: if the PFG from the previous year were to increase by 1%, the PFG from this year would fall by 0.255%, 0.145%, and 0.111% in FE, RE, and pooled-OLS, respectively.

It is clear by comparing AGING and YOUNGER countries that the former have a positive association with the PFG from the previous year, while the latter have a negative relationship. This could be because the increase of last year's pension funds in YOUNGER countries isn't drawing in more and more clients under the social security pension fund system. In contrast, the market in AGING countries is developed enough to draw in an increasing number of customers, as seen by the growth in pension funds last year.

Table-4: Dynamic Panel Models (DV= Pension Funds)

|             | Fixed Effec   | ct        |           | Random I      | Random Effect |           |               | Pooled-OLS |           |  |
|-------------|---------------|-----------|-----------|---------------|---------------|-----------|---------------|------------|-----------|--|
| Variables   | All<br>Sample | Aging     | Young     | All<br>Sample | Aging         | Young     | All<br>Sample | Aging      | Young     |  |
| PFG<br>(L1) | 0.222*        | 0.219***  | -0.255*** | 0.223**       | 0.227**       | -0.145*   | 0.235**       | 0.271***   | -0.111*** |  |
|             | (0.13)        | (0.14)    | (0.07)    | (0.05)        | (0.11)        | (0.09)    | (0.03)        | (0.13)     | (0.04)    |  |
| DR          | -0.169**      | -0.263*** | -0.340*** | -0.324**      | -0.275**      | -0.685*   | -0.125**      | -0.206**   | -0.434*** |  |
|             | (0.15)        | (0.05)    | (0.07)    | (0.06)        | (0.14)        | (0.1)     | (0.37)        | (0.01)     | (0.02)    |  |
| RR          | -0.465*       | -0.359*** | -0.348**  | -0.135**      | -0.215*       | -0.138*   | -0.128*       | -0.175**   | -0.127**  |  |
|             | (0.04)        | (0.01)    | (0.01)    | (0.01)        | (0.04)        | (0.03)    | (0.02)        | (0.03)     | (0.01)    |  |
| AGW         | 0.222*        | 0.196***  | -0.268*** | 0.248**       | 0.271**       | -0.141**  | 0.134*        | 0.716***   | -0.233*** |  |
|             | (0.13)        | (0.05)    | (0.07)    | (0.05)        | (0.1)         | (0.09)    | (0.03)        | (0.03)     | (0.04)    |  |
| WRK         | 0.831**       | 0.692***  | -0.187**  | 0.561*        | 0.123**       | -0.226*** | 0.232***      | 0.649***   | -0.143*** |  |
|             | (0.42)        | (0.15)    | (0.22)    | (0.16)        | (0.43)        | (0.27)    | (0.04)        | (0.19)     | (0.03)    |  |
| ER          | 0.264**       | 0.324***  | 0.162***  | 0.154*        | 0.241**       | 0.201***  | 0.100***      | 0.344***   | 0.311***  |  |
|             | (0.11)        | (0.02)    | (0.02)    | (0.02)        | (0.13)        | (0.03)    | (0.07)        | (0.02)     | (0.37)    |  |
| SR          | 0.394***      | 0.281**   | 0.112**   | 0.133**       | 0.221***      | 0.150**   | 0.330**       | 0.288***   | 0.177*    |  |
|             | (0.04)        | (0.1)     | (0.02)    | (0.01)        | (0.01)        | (0.02)    | (0.37)        | (0.09)     | (0.07)    |  |
| PTR         | 0.665***      | 0.206***  | -0.685*** | 0.306*        | 0.426**       | -0.201**  | 0.101*        | 0.163**    | -0.412**  |  |
|             | (0.03)        | (0.01)    | (0.01)    | (0.01)        | (0.03)        | (0.02)    | (0.07)        | (0.05)     | (0.01)    |  |
| GDPG        | 0.208**       | 0.753**   | 0.592**   | 0.312*        | 0.428***      | 0.396*    | 0.196**       | 0.357***   | 0.228**   |  |
|             | (0.1)         | (0.03)    | (0.04)    | (0.03)        | (0.09)        | (0.06)    | (0.02)        | (0.01)     | (0.07)    |  |
| EXR         | -0.319**      | -0.516*** | -0.550*** | -0.233*       | -0.169**      | -0.375**  | -0.345**      | -0.109**   | -0.112*** |  |
|             | (0.08)        | (0.03)    | (0.03)    | (0.03)        | (0.07)        | (0.05)    | (0.22)        | (0.05)     | (0.22)    |  |
| CPI         | 0.213***      | 0.303**   | -0.124**  | 0.206*        | 0.322**       | -0.201**  | 0.202**       | 0.269**    | -0.129**  |  |
|             | (0.02)        | (0.03)    | (0.11)    | (0.02)        | (0.03)        | (0.04)    | (0.07)        | (0.05)     | (0.11)    |  |
|             |               |           |           |               |               |           |               |            |           |  |



| Cons          | 5.751*** | 5.409*** | 4.964*** |          |          |          | 2.231*** | 4.692**  | 4.263*** |
|---------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|               | (0.77)   | (0.19)   | (0.37)   |          |          |          |          | (0.15)   | (0.02)   |
| R-<br>squared | 0.1985   | 0.3735   | 0.3503   | 0.1920   | 0.3628   | 0.3519   | 0.1811   | 0.3712   | 0.3576   |
| F-Model       | 61.05*** | 17.97*** | 20.75*** | 58.12*** | 10.23*** | 23.79*** | 54.30*** | 9.89***  | 21.20*** |
| Hetero        | 0.0978   | 0.0765   | 0.0867   | 0.0825   | 0.0567   | 0.0599   | 0.0948   | 0.0777   | 0.0788   |
| Serial        | 0.0899   | 0.0782   | 0.077    | 0.0933   | 0.0685   | 0.0744   | 0.0845   | 0.0732   | 0.0624   |
| AIC           | 215.7120 | 144.9504 | 147.5712 | 223.7760 | 167.5296 | 143.5392 | 368.9280 | 217.7280 | 165.3120 |
| BIC           | 212.1168 | 142.5346 | 145.1117 | 220.0464 | 164.7374 | 141.1469 | 362.7792 | 214.0992 | 162.5568 |

Table 4 indicates that, for the entire sample, DR exhibits a negative and statistically significant relationship with PFG at the 5% level across three instances. Furthermore, an increase of 1% in DR is associated with a decrease in the current year's PFG by 0.169%, 0.324%, and 0.125% in FE, RE, and pooled-OLS, respectively. Table 4 indicates that for the AGING-Countries sample, DR exhibits a negative and statistically significant relationship with PFG at the 1%, 5%, and 5% levels, respectively. Furthermore, an increase of 1% in DR is associated with a decrease in the current year's PFG by 0.263%, 0.275%, and 0.206% in FE, RE, and pooled-OLS, respectively. DR exhibits a negative and statistically significant relationship with PFG at the 1%, 10%, and 1% levels, respectively. Furthermore, a 1% increase in DR is associated with a decrease in the current year's PFG of 0.340%, 0.685%, and 0.434% RE, and pooled-OLS, respectively. FE, Comparative analysis reveals that the coefficients of DR for AGING countries are lower than those for YOUNGER countries. YOUNGER countries exhibit a higher dependency ratio, which adversely impacts the growth of pension funds relative to AGING countries.

Table 4 indicates that for the YOUNGER-Countries sample, the RR exhibits a negative and statistically significant relationship with PFG at the 5% and 10% levels. Furthermore, an increase of 1% in RR is associated with a decrease in the current year's PFG by 0.348%, 0.138%, and 0.127% in FE, RE, and pooled-OLS, respectively. Comparative analysis reveals that the coefficients of RR for AGING countries are significantly higher than those for YOUNGER countries. AGING countries exhibit higher replacement rates, negatively impacting the growth of pension funds relative to YOUNGER countries.

AGW exhibits a negative and significant relationship with PFG at the 1%, 5%, and 1% levels, respectively. Furthermore, an increase of 1% in AGW is associated with a decrease in the current year's PFG of 0.268%, 0.141%, and 0.233% in FE, RE, and

pooled-OLS, respectively. Comparing AGING and YOUNGER countries reveals that AGING countries exhibit a positive relationship, whereas YOUNGER countries demonstrate a negative relationship between AGW and the current year's PFG. The lower average wage in YOUNGER countries restricts workers' participation in pension schemes compared to those in AGING countries.

WRK exhibits a negative and statistically significant relationship with PFG at the 5%, 1%, and 1% levels, respectively. Furthermore, an increase of 1% in WRK is associated with a decrease in the current year's PFG by 0.187%, 0.226%, and 0.143% in FE, RE, and pooled-OLS, respectively. Comparative analysis of AGING and YOUNGER countries reveals that AGING countries exhibit a positive correlation between working age (WRK) and current PFG, whereas YOUNGER vear's countries demonstrate a negative correlation. This may be attributed to the lower average working age in YOUNGER countries compared to AGING countries.

ER demonstrates a positive and statistically significant relationship with PFG at the 1% level across all instances. Furthermore, an increase of 1% in ER is associated with a rise in the current year's PFG by 0.162%, 0.201%, and 0.311% for FE, RE, and pooled-OLS, respectively. Comparative analysis reveals that the coefficients of AGING countries exceed those of YOUNGER countries. employment rate is higher in AGING countries, while YOUNGER countries present fewer opportunities.



SR exhibits a positive and statistically significant relationship with PFG at the 5%, 5%, and 10% levels, respectively. Furthermore, an increase of 1% in SR is associated with a rise in the current year's PFG by 0.112%, 0.150%, and 0.177% in FE, RE, and pooled-OLS, respectively. Comparative analysis reveals that the coefficients of AGING countries exceed those of YOUNGER countries. In AGING countries, higher income levels contribute to a greater propensity for individuals to save for future benefits. Conversely, in YOUNGER countries, individuals have lower incomes and exhibit reduced tendencies to save for future retirement plans.

PTR exhibits a negative and statistically significant relationship with PFG at the 1%, 5%, and 5% levels, respectively. Furthermore, an increase of 1% in PTR is associated with a decrease in the current year's PFG by 0.685%, 0.201%, and 0.412% in FE, RE, and pooled-OLS, respectively. Comparing AGING and YOUNGER countries reveals that AGING countries exhibit a positive relationship, whereas YOUNGER countries demonstrate a negative relationship between PTR and the current year's PFG. This may be attributed to the lower average PTR in YOUNGER countries, resulting in fewer opportunities for individuals to save in social security contributions.

GDPG exhibits a positive and statistically significant relationship with PFG at the 5%, 10%, and 5% levels, respectively. Furthermore, an increase of 1% in GDPG is associated with increases of 0.592%, 0.396%, and 0.228% in the current year's PFG for FE, RE, and pooled-OLS, respectively. Comparative analysis reveals that the coefficients for AGING countries exceed those of YOUNGER countries. The GDP rate is comparatively higher in AGING countries.

The exchange rate (EXR) exhibits a negative and significant relationship with public financial governance (PFG) at the 1%, 5%, and 1% significance levels, respectively. Furthermore, an increase of 1% in EXR is expected to result in a decrease of 0.550%, 0.375%, and 0.112% in the current year's PFG for FE, RE, and pooled-OLS, respectively. Comparative analysis reveals that the coefficients of AGING countries are lower than those of YOUNGER countries. The explanation lies

in the fact that exchange rates in YOUNGER countries are relatively elevated.

Table 4 indicates that for the YOUNGER-Countries sample, the Consumer Price Index (CPI) exhibits a negative and statistically significant relationship with the Price of Food Grains (PFG) at the 5% level across all instances. Furthermore, an increase of 1% in CPI is associated with a decrease in the current year's PFG by 0.124%, 0.201%, and 0.129% in FE, RE, and pooled-OLS, respectively. Comparative analysis of AGING and YOUNGER countries reveals that AGING countries exhibit a positive relationship. whereas YOUNGER demonstrate a negative relationship between CPI and the current year's PFG. This may be attributed to the higher inflation rates in YOUNGER countries compared to AGING countries, which hinders the growth of pension funds.

#### Conclusion

This study analyzes the significance of macroeconomic factors in an economy, specifically focusing on pension-related factors and other factors that influence the growth of pension funds. Data for the empirical analysis of this study was collected from various sources, including the OECD data repository and the statistical profiles of individual countries.

A dynamic panel data regression model was utilized employing the fixed, random, and pooled effect technique. The results demonstrate that DR, RR, and EXR exhibit negative and significant outcomes, while ER, SR, and GDPG display positive and significant results concerning the growth of pension funds in AGING and YOUNGER countries. Last year's PFG, including AGW, WRK, PTR, and CPI, demonstrated mixed results. Specifically, these indicators exhibit positive and significant behavior in AGING countries, while showing negative and significant results in YOUNGER countries. It indicates that in YOUNGER countries, there are lower wage rates, a vounger working age, reduced personal tax rates, and elevated inflation rates, all of which adversely affect the growth of pension funds. Conversely, AGING countries exhibit the opposite trends.

For comparative analysis, three approaches were utilized: fixed effect, random effect, and pooled-OLS.



The results included R-square, F-test value, AIC, and BIC. The p-values for testing heteroskedasticity and serial correlation indicate the absence of these issues in the data, as the null hypothesis of no heteroskedasticity and no serial correlation is not rejected. The VIF column in the correlation matrix that there is no evidence multicollinearity among the observed variables. The results corroborate existing literature and theories regarding their significant relationships with the growth of pension funds. In summary, the aforementioned macroeconomic factors significantly contribute to the growth of pension funds in selected OECD countries. The coefficients for AGING countries are distinct from those of YOUNGER countries.

### Research Implication or Contribution

This study enhances the literature by categorizing OECD countries into high growth (AGING) and low growth (YOUNGER) based on the growth patterns of their pension funds. YOUNGER countries exhibit distinct characteristics regarding last year's PFG, average wage, working age, personal tax rates, and inflation rate when compared to AGING countries. A comparative analysis of AGING and YOUNGER countries was conducted using three approaches: fixed effect, random effect, and pooled OLS. Additionally, AIC and BIC were computed to determine the optimal model selection. Economic factors were categorized into pensionrelated factors (DR, RR, AWG, WRK, SR, and PTR) and miscellaneous factors (Inflation, ER, GDPG, and EXR), both of which significantly relate to the growth of pension funds in AGING YOUNGER countries.

This study presents several practical implications as outlined below:

This study enables OECD analytical officers to discern the patterns of pension growth in AGING and YOUNGER countries. The OECD pension outlook can present findings that illustrate the differing behaviors of YOUNGER countries in relation to last year's PFG, average wage, working age, personal tax rates, and inflation rate when compared to AGING countries. Pension fund authorities can analyze the changing patterns of macroeconomic factors in AGING and YOUNGER

countries and provide policy recommendations to pension fund management companies to benefit retired employees.

#### Research Limitations and Recommendations

This study categorizes OECD countries according to the growth of pension funds; however, alternative classifications can be made based on other metrics, such as income equality, utilizing the Gini coefficient. Additional research may be undertaken to examine the bidirectional causal relationship between PFG and various macroeconomic variables, including GDP and the savings rate.

#### References

- Adeniran, J. O., Yusuf, S. A., & Adeyemi, O. A. (2014). The impact of exchange rate fluctuation on the Nigerian economic growth: An empirical investigation. International journal of Academic Research in Business and Social sciences, 4(8), 224.
- Adrjan, P., & Bell, B. (2018). Pension Shocks and Wages. CEP Discussion Paper, (1536).
- Aldrich, J. (1982). The earnings replacement rate of old-age benefits in 12 countries, 1969-80. Soc. Sec. Bull., 45, 3.
- Alonso, J., Bjeletic, J., Herrera, C., Hormazabal, S., Ordonez, I., Romero, C. Ruiz, A. U. (2010). Projections of the Impact of Pension Funds on Investment in Infrastructure and Growth in Latin America.
- AmbuAmbachtsheer, K. and Bauer, R. (2007), "Losing ground: do Canadian mutual funds produce fair value for their customers?", Canadian Investment Review, Vol. 20, Spring Issue, pp. 8-14.
- Arbatli, M. E. C., Feher, M. C., Ree, M. J. J., Saito, I., & Soto, M. (2017). Automatic Adjustment Mechanisms in Asian Pension Systems?. International Monetary Fund.
- Banerjee, S., & Blau, D. (2016). Employment Trends by Age in the United States Why Are Older Workers Different?. Journal of Human Resources, 51(1), 163-199.



- Barr, N., & Diamond, P. (2009). Reforming pensions: Principles, analytical errors and policy directions. International social security review, 62(2), 5-29.
- Barr, Nicholas and Diamond, Peter (2006) The economics of pensions. Oxford Review of Economic Policy, 22 (1). pp. 15-39
- Barrientos, A. (1998). Pension reform, personal pensions and gender differences in pension coverage. World Development, 26(1), 125–137.
- Bartov E., and Bodnar G. M. Firm Valuation, Earnings Expectations, and the Exchange-Rate Exposure Effect.[J]Journal of Finance, 1994,49:755–1785
- Been, J., Caminada, K., Goudswaard, K., & van Vliet, O. (2017). Public/private pension mix, income inequality and poverty among the elderly in Europe: An empirical analysis using new and revised OECD data. Social Policy & Administration, 51(7), 1079-1100.
- Bernard Foley, (1987) "Pension Funds in the UK Danger Ahead?", Employee Relations, Vol. 9 Issue: 1, pp.23-25, https://doi.org/10.1108/eb055093
- Beveridge, W. H. (2014). Full Employment in a Free Society (Works of William H. Beveridge): A Report. Routledge.
- Bijlsma, M., Van Ewijk, C., & Haaijen, F. (2014). Economic growth and funded pension systems.
- Bivens, J. (2015). Gauging the impact of the Fed on inequality during the Great Recession. Hutchins Center Working Papers
- Bivens, J. (2015). Gauging the impact of the Fed on inequality during the Great Recession. Hutchins Center Working Papers.
- Blau, D. M. (2016). Pensions, household saving, and welfare: A dynamic analysis of crowd out. Quantitative Economics, 7(1), 193-224.
- Börsch Supan, A., Bucher Koenen, T., Coppola, M., & Lamla, B. (2015). Savings in times of demographic change: Lessons from the German experience. Journal of Economic Surveys, 29(4), 807-829.

- Budd, E. C., & Seiders, D. F. (1971). The impact of inflation on the distribution of income and wealth. The American Economic Review, 61(2), 128-138.
- Casey, B. H. (2014). From pension funds to piggy banks: (perverse) consequences of the Stability and Growth Pact since the crisis. International Social Security Review, 67(1), 27-48.
- Cheng, C. (2015). Essays on Defined Benefit Pension Insurance and Participating Life Insurance.
- çıkgöz, E., Uygurtürk, H., & Korkmaz, T. (2015). Analysis of factors affecting growth of pension mutual funds in Turkey. International Journal of Economics and Financial Issues, 5(2), 427-433.
- Cingano, F. (2014). Trends in income inequality and its impact on economic growth.
- Collins, M. L., & Hughes, G. (2017). Supporting pension contributions through the tax system: outcomes, costs and examining reform. The Economic and Social Review, 48(4, Winter), 489-514.
- Croce, R. D., Kaminker, C., & Stewart, F. (2011). The Role of Pension Funds in Financing Green Growth Initiatives. OECD Working Papers on Finance, Insurance and Private Pensions
- Curran, J., & Blackburn, R. A. (2001). Older people and the enterprise society: Age and self-employment propensities. Work, Employment and Society, 15(4), 889-902.
- Daly, M. C., & Hobijn, B. (2017). Composition and aggregate real wage growth. American Economic Review, 107(5), 349-52.
- David Fanning, (1980) "The Growth and Development of Occupational Pension Funds", Managerial Finance, Vol. 6 Issue: 3, pp.1-13, https://doi.org/10.1108/eb013471
- Davis, E. P. (1995). Debt, financial fragility, and systemic risk. Oxford University Press.
- De Freitas, N. E. M., & Martins, J. O. (2014). Health, pension benefits and longevity: How they affect household savings?. The Journal of the Economics of Ageing, 3, 21-28.



- De Vita, G. (2014). The long-run impact of exchange rate regimes on international tourism flows. Tourism Management, 45, 226-233.
- Denver, Colorado, 2015 STATE PERSONAL INCOME TAXES ON PENSIONS AND RETIREMENT INCOME: TAX YEAR 2014 National Conference of State Legislatures
- Dimpfl, T., & Schmidt, A. (2018). Persistent Imbalances: The Impact of Exchange Rate Appreciation on China's Trade Balances.
- Doukas JA., Hall PH., Lang HPL. Exchange Rate Exposure at the Firm and Industry Level[J]. Journal of Financial Markets, Institutions & Instruments, 2003,12 (5)
- Drucker, P. F. (2017). The pension fund revolution. Routledge.
- Evensen, S., Wisløff, T., Lystad, J. U., Bull, H., Ueland, T., & Falkum, E. (2015). Prevalence, employment rate, and cost of schizophrenia in a high-income welfare society: a population-based study using comprehensive health and welfare registers. Schizophrenia bulletin, 42(2), 476-483.
- Ezeanyeji Clement, I. (2016). Determinants of Exchange Rate Sensitivity on the Nigerian Manufacturing Sector. Economy, 3(1), 40-50.
- Feldstein, M. (2018). Social security pension reform in China. In Urbanization and social welfare in China (pp. 25-36). Routledge.
- Feldstein, M. S. (1981). Should Private Pensions Be Indexed. National Bureau of Economic Research, 211–230.
- Frost, J., Duijm, P., Bonner, C., de Haan, L., & de Haan, J. (2018). Spillovers of monetary policy across borders: International lending of Dutch banks, insurers and pension funds.
- Gabaix, X., & Maggiori, M. (2015). International liquidity and exchange rate dynamics. The Quarterly Journal of Economics, 130(3), 1369-1420.
- Galí, J., & Monacelli, T. (2016). Understanding the gains from wage flexibility: the exchange rate connection. American Economic Review, 106(12), 3829-68.

- Godlee, F. (2013). We need to separate "old" and "age." BMJ, 347.
- Grubert, H., & Altshuler, R. (2015, January). Shifting the burden of taxation from the corporate to the personal level and getting the corporate tax rate down to 15 percent. In Proceedings. Annual Conference on Taxation and Minutes of the Annual Meeting of the National Tax Association (Vol. 108, pp. 1-53). National Tax Association.
- Gustman, A. L., & Steinmeier, T. L. (1999, June). Effects of pensions on savings: analysis with data from the health and retirement study. In Carnegie-Rochester conference series on public policy (Vol. 50, pp. 271-324). North-Holland.
- Heer, B., & Irmen, A. (2014). Population, pensions, and endogenous economic growth. Journal of Economic Dynamics and Control, 46, 50-72.
- Heller, P. S. (1980). Impact of inflation on fiscal policy in developing countries. Staff Papers, 27(4), 712-748.
- Helman, Ruth and Variny Paladino. 2004. "Will Americans Ever Become Savers? The 14th Retirement Confidence Survey, 2004." EBRI Issue Brief No. 268. April.
- Hinrichs, K. (2018). Old age and pensions. In Routledge Handbook of the Welfare State (pp. 418-431). Routledge.
- Horioka, C. Y., & Terada-Hagiwara, A. (2012). The Determinants and Long-Term Projections of Saving Rates in Developing Asia. Japan and the World Economy, 24(2), 128–137.
- Horioka, C. Y., & Wan, J. (2007). The Determinants of Household Saving in China: A Dynamic Panel Analysis of Provincial Data. Journal of Money, Credit and Banking, 39(8), 2077–2096.
- Imrohoroğlu, A., & Zhao, K. (2018). The Chinese saving rate: Long-term care risks, family insurance, and demographics. Journal of Monetary Economics, 96, 33-52.
- Ippolito, R.A. and Turner, J.A. (1987), "Turnover, fees and pension plan performance", Financial Analysts Journal, Vol. 43, pp. 16-26.



- Karamcheva, N. S., & Sanzenbacher, G. (2014). Bridging the gap in pension participation: how much can universal tax-deferred pension coverage hope to achieve?. Journal of Pension Economics & Finance, 13(4), 439-459.
- Lachowska, M., & Myck, M. (2018). The effect of public pension wealth on saving and expenditure. American Economic Journal: Economic Policy, 10(3), 284-308.
- Laun, T., & Wallenius, J. (2015). A life cycle model of health and retirement: The case of Swedish pension reform. Journal of Public Economics, 127, 127-136.
- Lee, R. (2011). The Outlook for Population Growth. Science, 333(6042), 569–573.
- Lin, D. H., & Ding, Y. (2007). Social Security Pension New Deal: Assessing the Replacement Rate between Old and New [J]. Population & Economics, 1, 70-74.
- Magnus, G. (2012). The age of aging: how demographics are changing the global economy and our world.
- Möhring, K. (2015). Employment histories and pension incomes in Europe: a multilevel analysis of the role of institutional factors. European Societies, 17(1), 3-26.
- Montserrat Pallares-Miralles; Carolina Romero-Robayo and Edward Whitehouse, (2014)
  Pension Indicators Reliable statistics to improve pension policymaking, World Bank core course on pension reform Washington, D.C.
- OECD (2000), "Pension Funds in Figures", OECD Publishing, http://www.oecd.org/finance/Pensionfunds-pre-data-2000.pdf
- OECD (2004), "Pension Funds in Figures", OECD Publishing, http://www.oecd.org/finance/Pensionfunds-pre-data-2004.pdf
- OECD (2015), "Pension Funds in Figures", OECD Publishing, http://www.oecd.org/finance/Pensionfunds-pre-data-2015.pdf (Access Date: 28/8/2015)
- OECD (2017), "Pension Funds in Figures", OECD Publishing,

- http://www.oecd.org/finance/Pensionfunds-pre-data-2017.pdf
- Olowe R.A . Financial Management, Concept, Analysis and Capital Investments[M]. Brierly Jones Nigeria Limited, Lagos, 1997
- Parker, H. (2018). Instead of the Dole: An enquiry into integration of the tax and benefit systems. Routledge.
- Pensions Commission. (2004). Pensions: Challenges and choices (Vol. 2). The Stationery Office.
- Reisen, H. (1997). Liberalising Foreign Investments by Pension Funds.
- Roger Ibbotson®; James Xiong; Robert P. Kreitler®; Charles F. Kreitler; and Peng Chen, (2007) Journal of Financial Planning, National Savings Rate Guidelines for Individuals
- Ruhs, M., & Vargas-Silva, C. (2015). The labour market effects of immigration. Migration Observatory briefing, COMPAS, University of Oxford, Oxford.
- Scharfstein, D. (2018). Pension policy and the financial system. Journal of Finance, Forthcoming.
- Scherger, S. (Ed.). (2016). Paid work beyond pension age: Comparative perspectives. Springer.
- Sherman, K. G. (2006). Replacement rates in the new Swedish pension system. Nördisk Försäkringstidskrif, 2.
- Sinclair, M. B. W. (1987). Reversion of Surplus Pension Assets Upon Plan Termination: Is It Consistent with the Purpose of ERISA? Indiana Law Journal, 62(2), 11.
- Singh, T., & Mehta, S. (2015). Developing relationship between tax structure, pension funds and economic growth in oecd nations. JIMS8M: The Journal of Indian Management & Strategy, 20(3), 34-41.
- Thaler, Richard H. and Shlomo Bernatzi. 2004. "Save More Tomorrow: Using Behavioral Economics to Increase Employee Saving." Journal of Political Economy 112, S1: S164-S187. Walsh,
- Thomas G. 2003. "How Much Should a Person Save for Retirement?" November. See http://www.tiaa-crefinstitute.org/research/papers/110103.ht ml.



- Thompson, G. B. (1978). Impact of inflation on private pensions of retirees, 1970-74: Findings from the Retirement History Study. Soc. Sec. Bull., 41, 16.
- Vogel, E., Ludwig, A., & Börsch-Supan, A. (2017). Aging and pension reform: extending the retirement age and human capital formation. Journal of Pension Economics & Finance, 16(1), 81-107.
- Worrall, J. D., & Appel, D. (1982). The wage replacement rate and benefit utilization in workers' compensation insurance. Journal of Risk and Insurance, 361-371.
- Yang, Z. (2009). Urban public pension, replacement rates and population growth rate in China. Insurance: Mathematics and Economics, 45(2), 230-235.
- Zaigui, Y. (2008). The Public Pension for Enterprise Employees, Benefit Replacement Rate and Population Growth Rate [J]. Statistical Research, 5, 008.